A note on approximate Bayesian bootstrap imputation
نویسنده
چکیده
The approximate Bayesian bootstrap is suggested by Rubin & Schenker (1986) as a way of generating multiple imputations when the original sample can be regarded as independently and identically distributed and the response mechanism is ignorable. We investigate the finite sample properties of the variance estimator when the approximate Bayesian bootstrap method is used and show that the bias is not negligible for moderate sample sizes. A modification of the method is proposed for reducing the bias of the variance estimator. The proposed method is asymptotically equivalent to the approximate Bayesian bootstrap method but has better finite sample properties.
منابع مشابه
Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method
The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...
متن کاملOn the Imputation of Missing Data in Surveys with Likert-Type Scales
The aim of this paper is two-fold: to propose the imputation procedure named ABBN for replacing missing data in likert-type scales and to compare its performance with some well-known imputation methods. ABBN is a hot-deck imputation procedure which modifies the Approximate Bayesian Bootstrap method by sampling the donor in the neighbourhood of the nonrespondent. The comparison among the imputat...
متن کاملUsing an Approximate Bayesian Bootstrap to multiply impute nonignorable missing data
An Approximate Bayesian Bootstrap (ABB) offers advantages in incorporating appropriate uncertainty when imputing missing data, but most implementations of the ABB have lacked the ability to handle nonignorable missing data where the probability of missingness depends on unobserved values. This paper outlines a strategy for using an ABB to multiply impute nonignorable missing data. The method al...
متن کاملInnovative Imputation Techniques Designed for the Agricultural Resource Management Survey
The Agricultural Resource Management Survey (ARMS) is a high dimensional, complex economic survey which suffers from item non-response. Here, we introduce methods of varying complexity for imputation in this survey. The methods include stratified mean imputation, the approximate Bayesian bootstrap, and non-iterative and iterative sequential regression. The iterative sequential regression is a f...
متن کاملNon-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کامل